
FORMAL PROGRAMMING MACHINES OF MODERN

PROGRAMMING LANGUAGES

Let's consider the use of algebraic interpretation of language constructs for PL

C, Lisp and Prolog as the most well-known algorithmic languages, which are

representatives of languages of the universal, functional and logical type,

respectively.

Study of C language constructs

Control constructs of the C++ (C) language are represented by the following

algebraic system:

FC++ = <AC++,C++, RC++ >,

in which AC++ = { f1, f2, …, fi, … , fn, … } is a set of language constructs

described by the generative grammar Gс++ of the C++ language and describing the

control of the program structure.

Let's consider an example of an optimizing transformation of a program

fragment in C++ (C) using the following conventions. We denote the sequential

composition of C language operations, interpreted as the sequential execution of

operators, as follows:

 x ; x ; ... x ; = f (x , x ..., x)
1 2 n

+

1 2, n
.

Due to the associativity of this operation and in order to simplify the writing

of expressions, we will omit this operation (using the syntax of the left side of the

above expression).

The designations required for transformations are summarized in the

following table (Table 1).

Table 1

Notation of C-constructs in the form of program terms

N

Designation of C-design

in a programme

Designation in the form

software term

1 unsigned x1, ..., xn ; f0 (x1, ..., xn)

2 if (x1) x2 else x3 ; f1 (x1, x2, x3)

3 if (x1) x2 ; f2 (x1, x2)

4 { x1; ...; xn} f3 (x1, ..., xn)

5 x1++ ; f4(x1)

6 x1-- ; f5(x1)

7 x1 - x2 ; f6 (x1, x2)

8 ! x1 ; f7 (x1)

9 x1 && x2 f8 (x1, x2)

10 x1 += x2 ; f9 (x1, x2)

Let the set of operationsFC++contains the following elements:


0 1 2 1 2
(x , x) = x ; x ; - sequential composition operation,


1

j

0 i 1 j n i 1 0 n
(x , f (x ,... , x ,...x)) = f (x ,... , x ,... , x);- substitution operation.

The RFC++ relationship set will use the following binary relationships:

= - equivalence,- non-equivalence,- independence.

Algebra of memory statesc++will be represented by the following system of

sets:

Q A , , R
C++ C

Q

C

Q

C

Q 
  
 ,

Where A {Line_1, L_ Flag, X}, { }
C++

Q

C

Q  


 - composition, R = {=, , }
C

Q


  -

relations of equivalence, non-equivalence and independence, respectively.

Let's look at a specific example. Let it be necessary to prove the equivalence

of the two C-programs presented below.

Program 1-1 Program 1-2

unsigned Line_1, L_Flag, X; unsigned Line_1, L_Flag,X;

// ... //...

Line_1++; Line_1 += X;

if (L_Flag) Line_1 += X

else

if (!L_Flag && Line_1) {

Line_1 += X;

L_Flag = 0;

};

Line_1--;

For the proof, we will use the following axioms and theorems of applied

calculus, interpreted into the proposed system of algebras.

(1-1) Initialization axiom:

 x : f (x ,... , x) = f (x ,... , x); f (x ,0); ... f (x ,0);
i 0 i n 0 i n 6 i 6 n



(1-2) Theorem on the permutation of independent syntactic structures (proved

by complete induction on memory elements for various operations):

 f , f f (x ,... , x) f (x , ... , x) =>

 [f (x ,... , x); f (x ,... , x) = f (x , ... , x); f (x , ... , x);].

i j i 1 n j t m

i 1 n j t m j t m i 1 n

 

(1-3') Axiom about the conditional operator:

 f (x ,0); f (x , x , x) = f (x ,0); x .
6 i 1 i j k 6 i k

(1-4') Axiom about the abbreviation of the conditional operator:

 f (x ,0); f (x , x) = x .
6 i 2 i k k

(1-5') Substitution axiom:

 f (x ,0); f (x ,... , x) = f (x ,0); f (0,... , x) .
6 i i i n 6 i i n

(1-6') Axioms of elementary mathematical logic:

 f (0) 1; f (1) 0; f (1, x) x ; f (0, x) 0; f (x , x) f (x , x) .
7 7 8 i i 8 i 8 i j 8 j i

    

(1-7') Reassignment Axiom:

 f (x , x); f (x , x) f (x , x) .
6 1 n 6 1 m 6 1 m



(1-8') Theorem on arithmetic expressions (proven in the axiomatics of formal

arithmetic):

 f (x); f (x , x); f (x); = f (x , x) .
4 i 9 i j 5 i 9 i j

In the listed expressions, the axioms marked with numbers with a prime refer

to optimizing axioms that reduce the text of the program and, accordingly, its

running time.

To prove the equivalence of the programs, we write Program 1-1 in algebraic

notation.

Step 1 (initial program structure)

 f (x , x , x); / / unsigned Line_1, L_ Flag, X;

 f (x); / / Line_1 + +;

 f (x , f (x , x), / / if(L_ Flag) then Line_1+ = X else

 f (f (f (x), x), / / if(!L_ Flag& Line_1) then

 f (f (x , x), f (x ,0)); / / {Line_1+ = X; L_ Flag = 0;};

 f (x); / / Line_1 - -;

0 1 2 3

4 1

1 2 9 1 3

2 8 7 2 1

3 9 1 3 6 2

5 1

Step 2 (equivalent transformation using axioms

(1-1),(1-2))

 f (x , x , x); / / unsigned Line_1, L_ Flag, X;

 f (x); f (x ,0); / / Line_1 + +; L_ Flag = 0;

 f (x , f (x , x), / / if(L_ Flag) then Line_1+ = X else

 f (f (f (x), x), / / if(!L_ Flag& Line_1) then

 f (f (x , x), f (x ,0)); / / {Line_1+ = X; L_ Flag = 0;};

 f (x); / / Line_1 - -;

0 1 2 3

4 1 6 2

1 2 9 1 3

2 8 7 2 1

3 9 1 3 6 2

5 1

Step 3 (equivalent transformation using Theorem (1-3))

 f (x , x , x); / / unsigned Line_1, L_ Flag, X;

 f (x); f (x ,0); / / Line_1 + +; L_ Flag = 0;

 f (f (f (x), x), / / if(!L_ Flag& Line_1) then

 f (f (x , x), f (x ,0)); / / {Line_1+ = X; L_ Flag = 0;};

 f (x); / / Line_1 - -;

0 1 2 3

4 1 6 2

2 8 7 2 1

3 9 1 3 6 2

5 1

Step 4 (equivalent conversion using

axioms (1-4)-(1-7))

 f (x , x , x); / / unsigned Line_1, L_ Flag, X;

 f (x); f (x ,0); / / Line_1 + +; L_ Flag = 0;

 f (x , x); f (x ,0); / / Line_1+ = X; L_ Flag = 0;

 f (x); / / Line_1 - -;

0 1 2 3

4 1 6 2

9 1 3 6 2

5 1

Step 5 (transformation using axioms (1-1), (1-2),

(1-7),(1-8))

 f (x , x , x); / / unsigned Line_1, L_ Flag, X;

 f (x , x); / / Line_1+ = X;

0 1 2 3

9 1 3

Which is equivalent to Program 1-2.

Typically, such a noticeable optimization of a small fragment of a program

indicates a logical error in the program (or a typo that did not lead to a syntax

error). In this case, it is advisable for the optimizer program to issue a

corresponding warning.

Example for Lisp language constructs

Lisp language constructs are represented by the following algebraic system:

F A , , R
Lisp Lisp Lisp Lisp

  ,

where ALisp is a set of lists representing programs in the Lisp language.Lisp= {,

+ }; - a set of operations consisting, respectively, of substitution operations and

concatenation operations. Lots of Relations in Lisp Programs R { =, , }
Lisp

  

consists respectively of the relations of equality, inequality and orthogonality

(independence) of programs.

For program constructions we introduce the following notation (see Table 2).

Using this notation, consider the following example. Suppose we need to prove the

equivalence of the two Lisp programs presented below.

Program 2-1

(define (((sample (lambda (x) (prog(mn) (setq mx)

(setq nx) (setq m (append (car m)(cdr n))) (return m)))))))

Program 2-2

(define (((sample (lambda (x) (prog(mn) (setq mx)

(setq nx) (return m)))))))

The following axioms and theorems are used for the proof.

(2-1) Axiom for introducing a known true conditional list:

 (f (f (x , x), f (x , x) x) = (f (f (x , x), f (x , x) f (f (x , x)) x)) .
i 4 1 2 4 3 2 j i 4 1 2 4 3 2 3 e 1 3 j

(2-2) Theorem about invariant variables:

 {f (x , ..., x) x , ..., x } & x x & x x &...& x x =>

 f (x , ..., x) f (x , ..., x).

i 1 n 1 n 1 2 2 3 n 1 n

i 1 n i 1 1

   





(2-3) Axiom of inverse list operations:

 f (f (x), f (x)) x .
9 0 1



(2-4) Axiom of empty assignment:

 f (x, x) 1 (NULL) .
4



Let us further write Program 2-1 in algebraic notation:

Step 1 (initial program structure)

f (f (f (x, f (x , x), f (x , x), f (x , x) f (x , f (f (x), f (x))), f (x)))),
8 s 6 5 m n 4 m 4 n 4 m 9 0 m 1 n 7 m

where fs is the newly defined sample function.

Step 2 (equivalent transformation according to axiom (2-1))

 f (f (f (x, f (x , x), f (x , x), f (x , x) f (f (x , x),

 (f (x , f (f (x), f (x)))), f (x))))

8 6 5 m n 4 m 4 n 3 n m

4 m 9 0 m 1 n 7 m

s e

or in Lisp syntax:

(define (((sample (lambda (x) (prog(mn) (setq mx)

(setq nx (cond(equal(mn) (setq m (append (car m)(cdr n))))

(return m))))))) .

Step 3 (transformation according to theorem (2-2) and axiom (2-1):

 f (f (f (x, f (x , x), f (x , x), f (x , x),

 (f (x , f (f (x), f (x)))), f (x))))

8 s 6 5 m n 4 m 4 n

4 m 9 0 n 1 n 7 m

or in Lisp syntax:

(define (((sample (lambda (x) (prog(mn)

(setq mx) (setq nx) (setq m (append (car n)(cdr n))) (return m))))))) .

Step 4 (transformation according to axioms (2-3, 2-4):

 f (f (f (x, f (x , x), f (x , x), f (x , x) f (x)))).
8 s 6 5 m n 4 m 4 n 7 m

Which corresponds to the text of Program 2-2.

Prolog Constructs

There is apparently no need to give examples of Prolog programs, since the

equivalent transformations for this language are transformations of the well-known

algebra of logic.

Interpretation of language constructs

Consideration of the interpretation of PL constructions makes it possible to

explore their semantics, as well as mathematically strictly substantiate the

axiomatics of PL PM.

Table 2

Notation of Lisp constructs in the form of program terms

N p / p

Design designation

in a Lisp program

Designation in the form

software term

1 (quote x1) f0(x1)

2 (car x1) f1(x1)

3 (cdr x1) f2(x1)

4 (setq x1 x2) f3 (x1, x2)

5 (cond x1 x2) f4 (x1, x2)

6 (prog x1...xn) f5 (x1, ..., xn)

7 (lambda x1 ... xn) f6 (x1, ..., xn)

8 (return x1) f7 (x1)

9 (define x1) f8(x1)

10 (append x1 x2) f9 (x1, x2)

eleven (equal x1 x2) fe (x1, x2)

Interpretation of syntactic constructions for the C language

As follows from paragraph 1.3, the interpretation of control syntactic

structures for the C language is given by the following algebraic system:

Ф
c c c c

A , , R  .

For Fs, all signature and relationship agreements are preserved, i.e.

With=fand Rc = Rф, but its own basis is used A
C

T for Ac carrier.

In the C language, as in many other universal programming languages,

controls include four main structured programming constructs [37,136]:

- linear sequence of language operators,

- conditional full and abbreviated operators,

- loop construction with precondition,

- loop construction with postcondition.

The interpretation of these constructions is a subset of the basis A
C

T and is

given by the derived elements Ac as follows.

Further in the text, the superscript of the functional interpretation symbols

replaces the operation label, and the composition symbol is interpreted as a union

of sets.

Linear sequence of statements

f ; f ; ...; f ;
1 2 n - an expression in the syntax of the C language.

     
0

0

1 0

1

0

1

2 0

2

0

n 1

n
(m(f),) (m(),) ... (m(f), stop);o o o  -

interpretive sequence.

Conditional operator

if (f) then f else f ;
1 2 3

- in the syntax of the language,

      
1

0

1 2

1

2

1

0

2

0

3

0

2

2 0

3

3
(m(f),) (m(), m()) (m(f), stop) (m(f), stop)o o o -

interpretive sequence.

Loop with precondition

while (f) f ;
1 2

- in the syntax of the C language,

 (m(f),) (m(), stop) (m(f),);
1

0

1 2

1

2

1

0

2

0

2

2 1

0     o o - interpretive sequence.

Loop with postcondition

do f while f ;
1 2

- in the syntax of the C language,

     
1

0

1 1

1

1

1

2 2

2

2

2

0

1(m(f),) (m(f),) (m(), stop);o o - interpretive sequence.

The interpretation of Ac also includes the interpretation of other syntactic

constructions of the C language, which can be called applied, as well as the

interpretation of all constructions built on them using the composition operation.

The algebraic interpretation system has its own axioms that characterize the

properties of the operation of composition of various components of the carrier set.

(3-1) Commutativity axiom for independent linear composition:

 m(f) m(f) (m(f),) (m(f), stop) =

 (m(f),) (m(f), stop) .

1 2 1 2

2 1

    

  

0

1

0

2

0

2

0

2

0

1

0

1

o

o

(3-2) Commutativity axiom for independent terminal constructions:

 m() m() (m(),) (m(), stop) =

 (m(),) (m(), stop) .

1 2 0

1

1 0

2

0

2

2

0

2

2 0

1

0

1

1

      

    

  o

o

(3-3) Axiom on the interpretation of reinitialization:

I (m(x), I) I (m(x), stop) = I (m(x), stop)
1 i i i

=

2

=

2

=

2

=o ,

Where I
i

= - initialization operation (an operation of changing the contents of

memory m(xi) regardless of the previous contents of m(xi), assuming that m(xi) is

not contained in the program code area).

The axioms of the algebraic system of interpretation are more visible and

reliable than the axioms of the algebra of syntactic constructions of the language,

since they operate with simpler concepts. In general, the idea of a “tower of

languages” allows us to reduce any well-constructed interpretation system to a

formal Turing machine.

In particular, consideration of the interpretation of C language constructions

allows us to substantiate the reliability of the Fc axioms. So, for example, for

axiom (1-1) from clause 1.4, the following proof can be given.

Step 1 (by definition of operator f0)

I(f (x , ..., x)) (m(x), I) I (m(x), I) ...
0 i n n

1

i n 1 i 2
    o o

o o
n

n

n 1 n n
(m(x), I) I (m(x), stop). 

Step 2 (as defined by the f6 operator)

 I(f (x ,0)) I (m(x , stop).
6 i 1 i

 

Step 3 (for the right side of axiom (1-1))

I(f (x , ..., x); f (x ,0); ...f (x ,0);) (m(x),) ... (m(x), I)

I (m(x), I) ... I (m(x), I) I (m(x), I) ... I (m(x), stop) .

0 i n 6 i 6 n n

1

i 1 n

n

i 1

1 i 2 n n n 1 n 1 i n 2 n n n

  

  

















  o o o

o o o o o

Step 4 (according to axioms (3-1) and (3-3))

  

    

n

1

i 1 n

n

i 1 1 i 2

n n n 1 n 1 i n 2 n n n

n

1

i 1 n

n

n 1 1 i 2 n n

(m(x),) ... (m(x), I) I (m(x), I) ...

I (m(x), I) I (m(x), I) ... I (m(x), stop) =

(m(x),) ... (m(x),) (m(x), I) ... I (m(x), stop).

   



















    

o o o o

o o o o

o o o o o

Which corresponds to the interpretation I(f0(xi,...,xn)).

Interpretation of syntactic constructs for the Lisp language

The algebraic system describing the interpretation of Lisp constructions is

given by the triple:

Ф
Lisp Lisp Lisp Lisp

A , , R  ,

where are the setsLisp, RLisp are analogues of the corresponding setsf, Rf.

As a functional language, base Lisp uses a functional interpretation of almost

all of its constructs:

(f , f , ..., f)
0 1 n

- in Lisp syntax,

     

   

0

0

1 0

1

0

1

2 0

2

0

n

n 0

n+1

1

n+1

0

0

0

1

0

n

(m(f),) (m(f),) ... (m(f),)

(m() m() .. m(), stop)

o o o o

o   

- in interpretation.

The relative ease of interpretation of Lisp control syntactic structures

predetermines the justification of most Lisp axioms within the framework of an

applied interpretation system.

So, for example, in the applied Lisp interpretation system, one can distinguish

the interpretation of Lisp functions: quote (saving an argument), append

(combining arguments), car (issuing the first element of a complex list argument),

cdr (issuing all elements of the argument except the first).

 I (m m , stop) = I (m(m m), stop),

 I (m m ... m , stop) I (m , stop),

 I (m m ... m , stop) I (m(m ... m), stop).

ppen quote

car quote

cdr quote

1 2 1 2

1 2 n 1

1 2 n 2 n

a d
 

   

     

Based on these relationships and the interpretation of control constructs of the

Lisp language, one can, for example, justify axiom (3-3):

(append (car x)(cdr x)) = (quote x).

Step 1 (recording the interpretation of the left side of the axiom)

 I (m m ... m , I) I (m m ... m , I)

 I (m(I) m(I), stop) .

o 1 2 n 1 1 1 2 n 2

2 0 0

car cdr cdr append

append car cdr

     



o o

o

Step 2 (from interpretive definitions)

 m(I) m , m(I) m m ... m ,

 I (m m ... m , stop) I (m(m m ... m), stop),

0 1 1 2 3 n

2 1 2 n 1 2 n

car cdr

append quote

    

      

which corresponds to the interpretation (quote x).

Constructs for the Prolog language

The interpretation of syntactic constructions in logical languages has been

well studied within the framework of the model-theoretic approach in the study of

the interpretation of applied first-order theories into algebraic systems.

Thus, algebraic formalization allows us to study the PMs of various

algorithmic languages from a unified point of view, and therefore makes it possible

to compare these PMs, develop new ones, and describe the semantics of the LP in

algebraic notation.

The algebraic systems that make up the PM can be used to study the PL both

separately and in combination, within the framework of a multi-basic algebraic

system. The construction of such a system for any language or other instrumental

software, in our opinion, is advisable for studying issues of optimization, automatic

(automated program construction), as well as studying the functional integrity of

software systems based on language formalization.

